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ABSTRACT

This paper is concerned with a numerical study of the equation

2 t u (t) ux(s)
PU = 3n1- (- -) + f a(t-s)(--2--) X

t uu 2 (s) u2 (t)
x X

where u(x,t) is real valued for x e [-1,1] and t e R with the boundary

condition

a t u (t) u (s)
311 - (- -) + I a(t-s)( x x )dt = f(t)

x -0 u (s) u (t)
x x

at x = ±1. This problem is a model equation for elongation of a thin
filament of a polymeric liquid when the force f is applied at both ends.
The initial condition is u(x,- -) = P(x). The unknown variable u(x,t)
denotes the position of a fluid particle (in a deformed state at time t),
which is at position x in space in a certain reference configuration. In
this reference state the filament is assumed to be cylindrical. a(t) is a

"*, memory kernel, P denotes the density of the fluid and n the Newtonian
*contribution to the viscosity. We set up a difference scheme for this problem

and show the convergence under certain assumptions on f and we report

computations.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with the study of a model equation for the

elongation of a filament of a polymeric liquid when a force is applied to the

eiids of the filament. Mathematically the equation has the form of a nonlinear

partial integrodifferential equation for the position of a fluid particle in

time and space. However this equation can be transformed to a quasilinear

parabolic system. Parameters of the equation are the density of the fluid,

the Newtonian contribution to the viscosity and certain relaxation constants

which represent the 'memory' of the fluid.

Our focus is the numerical investigation and therefore, a difference

method is set up and its convergence is proved under the assumption that the

force which is applied to the ends of the filament is small in an appropriate

norm (this is the case for which an existence and uniqueness theorem was

proved). Computations are reported.
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THE NUMERICAL SOLUTION OF A QUASILINEAR PARABOLIC
EQUATION ARISING IN POLYMER RHEOLOGY

P. Markowich ,1,2 and M. Renardy

1 . INTRODUCTION

We present a numerical study of a model equation describing the

stretching of a filament of a polymeric liquid, when a force f is applied to

both ends:

The model is based on the following assumptions: The polymer is

incompressible and fulfills the "rubber-like liquid" constitutive relation

[3]. Moreover, the filament is thin and hence the originally three-

dimensional problem can be approximated (formally) by an equation which is

one-dimensional in space.

Under these assumptions, the following model equation was derived in (7].

: 2  a t u(t) u s
(1.1) p i = l (- = .3 +L f a(t-.)( x )ds

x - u (s) u2

x x
for x e [-1,1, t e R

* Supported by the Austrian Ministry of Science and Research and the

Mathematics Research Center, Madison, Wisconsin.
•* Supported by Deutsche Forschungsgemeinschaft.

ISponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2This material is based upon work supported by the National Science roundation
under Grant No. MCS-7927062.
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(1.2) 3n~~(. -L) + f ax-e - (~ss d f tW2 2

at x I, t e Rx

(1.3) u(x,t ) - (x)"

for x e [-1,1]

The subscript x denotes partial differentiation with respect to x, and

"dot" denotes partial differentiation with respect to t. The unknown

variable u(x,t) is the position of a fluid particle in a "deformed" state

(at time t), which is at position x in an "undeformed" reference state. In

this reference state the filament is assumed to be cylindrical. Thus the

thickness of the filament in the initial state u - p(x) is proportional to
1

'P , (X)~

We have normalized the length scale such that the filament has length

2 in the reference state. The resulting scaling factor is absorbed into P1

which denotes the density of the filament multiplied by the square of half the

length in the reference state. n denotes a Newtonian contribution to the

viscosity, and f the force acting on the ends divided by the cross-sectional

area in the reference state.

The memory kernel a has the form

M -At
(1.4) a(t) = Kie Ki >0.

(more general kernels were considered in [7]).

A problem closely related to (1.2) was investigated analytically by

Lodge, Mc Leod and Nohel (4] and numerically by Nevanlinna [6]. They regard

(1.2) as a history value problem: u is given for t > 0, and f(t) 0

-2-
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for t > 0. Their results hold for a class of kernals a and functions

F(u x(t), ux(s)) under the integral that include those in (1.2).

In our current setting, (1.2) was investigated both analytically and

numerically in [5) as a model for the elongation of the filament, when

inertial forces are neglected. It was shown there that if f is small in the

sense of an exponentially weighted L -norm or if f converges to 0

exponentially as t + and f(t) 0 for t ) to, t finite, then problem

(1.2) has a unique solution globally in time which satisfies the initial

condition at t = - . This solution lies again in an exponentially weighted

L -space. In [7], Renardy showed that, for the case of small f, a similar

existence result holds for the full problem (1.1). This equation was

transformed to a quasilinear parabolic system that, together with (1.2),

constitutes a Neumann problem. For technical reasons, weighted Sobolev (L-

based) spaces were used instead of weighted Le-spaces here.

For the boundary problem (1.2), it was also shown that solutions depend

continuously on n even as n + 0. No result like this is yet known for the

full spatial problem.

Although this does not affect the mathematics, we wish to remark that

only f > 0 makes sense physically, because an attempt to compress the

filament would result in buckling.

In this paper, we devise a finite difference method for the numerical

solution of (1.1) - (1.3), and we show the convergence of this method for

small forces f and the initial condition p(x) = x. Our proof uses discrete

analogues of the weighted Sobolev spaces employed in the analytical theory.

The paper is organized as follows. Chapter 2 recalls the existence

result given in (71, chapter 3 contains the convergence proof for the

difference scheme, and computations are reported in chapter 4.

-3-



2. ANALYTICAL THEORY

We study the problem (1.1) - (1.3) with a kernel of the form (1.4). The

existence result we present is "local" in the sense that f is "small" in a

certain norm that will be defined below.

Definition 2.1:

Let Z be a Banach space. Then we denote by Hn (Z) the space of all

functions R + Z whose first n derivatives are square-integrable in the

Bochner sense. Moreover, let
(Y~n t -at n

Y'(Z) = {u: R 4 Z Ie u, e u e Hn(R, Z)}

and

an-at nXa'n(Z) = {u : R + Z I e ue H (R,),au,,e z such that

e t(u-u.) e H n(RZ)

The natural norms in Y0 'n(Z) and 'an (Z) are

HuH = 'etul + He-°ul
Ya,n (Z) H (i, Z) H (R,Z)

and

a 0,n le-t u N + lu lZ  + le t(u-u .) n
X (Z) Hn(R,Z) H (RZ)

The boundary problem has been discussed both analytically and numerically

in an earlier paper [5]. It was shown there that, if a is chosen small

enough, then, for any given a e R+ and f e Y'n (R) with sufficiently small

norm, there is a unique solution u satisfying u - a e xa'n(R). Moreoverx x

Ku - al converges to zero as If# converges to zero. (In (5], we used

L -based rather than L -based spaces, but this does not affect the

proofs). Moreover, a numerical scheme was analyzed and convergence was

proved. In view of these results, we shall henceforth assume that (1.2) has

been solved, and examine (1.1) with given Neumann boundary conditions

-4-
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(2.1) ux b 1(t) at x +1, u x b- (t) at x -1

where b b1  - U e x In (R) for certain a1 , OPa- eR+

This problem was analyzed in chapters 3 and 4 of (7], and in the

following we quote those results needed in the present paper. Following [7],

we transform (1.1) to a system of equations, which can be classified as

quasilinear parabolic. For this we substitute

q ux

r u

9 1 ft e (t-s) (u (a) - u (t))ds

(2.2) 1 ft ei(t-S) (u xx(S) u (t Wu x(a s)
g2 _40 3 (S) u 4 (t)

9 g1 f t - i(t-s) (u 2 (S) - U-2(t))ds
3 -M x

St -)(t-s) u (t Wu 2(t

94= f e i (U X(s) - 2x )ds
u (S

With these substitutions, (1.1) is transformed into the following systeml

-5-



p-r xx

q n

* 1 -72 -3 11
P3r r,, 6TP x 1i 2 2 1 4gl

ip i-

p rx

(2.3) r

II

Sr, 4r q
g2 -)g 2  - (g1  5j. +-- g1+'

p p

2r

g3  9 + x 3

@ 1 9 - r W 2 ( i + - 2 r p g + I )

1 4
Xip i

The boundary conditions are now

p b (t), r b 1 (t) at x 1

(2.4) p - b l(t), rx  W .lt) at x -I

(let us assume that - k, b - a-, are at least in XI (R)). Since

the boundary condition for p follows from (2.3) and the boundary condition

for rx , provided it is satisfied initially, we can ignore it.

If b W 0, - 0 then, for any p0 e H2 [-1,1] with p0 > 0, a
aPo

trivial solution of (2.3) is given by p = p0  q - - r - 0,
i i i 

ri

9 1 g2 = g4 - 0. For the following, it is convenient to set

S t b- b + b-
r 4 r + -1 - 2 + x so that the boundary condition for

r is r - 0 at x - *1. Moreover, let y denote
x

i nnnu uu III I I I [] II II I r t ] I !1 I I - I I l I'I III I II -6- .
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i"ij

(P-P0' q-q 0 'r'g 1 'g 2 g 3 g 4 ) " By A we denote the linearization of the right

hand side of (2.3) at the trivial solution, i.e. the operator

i i A 3n -2 ^  6n 3 2p 0 (r i
(p,q,r,gg 2 ,g 3 ,g 4  X xx--po r --- Kig 2~i=1

n r i r + , +4r q
2P K.g, ig -g2- X +-Agig3 2r

gi r 2rxq0 X

- -ig x: -- xo
io P0O POi

1i 0

21
The boundary r x = 0 is incorporated in A. Let X2  denote the space

C(-1,1] x (H [-Il) x (H 1,1])4, and let D(A), N(A) and R(A) denote

he domain, nullspace and range of A, regarded as an operator in X2 . We

quote the following result from (7].

Theorem 2.1:

Let p 0 e H 2[-1,11 be given such that p 0 > 0, and let q0  a
0 0 0

Moreover, let n be an integer ; 1. Then, if a is chosen small enough and

b1(t) and bl(t) have sufficiently small norm in Y 'n(R), equations

(2.3), (2.4) have a solution, for which y (as defined above) is

a,n+1,n
in X (N(A)) (D(A) ) R(A)) n y 'n+ (R(A)). y depends smoothly on

Remarks:

1. If b is sufficiently smooth, it is easy to use a bootstrapping argument

to estimate higher derivatives of y with respect to x. We shall not

demonstrate this here, but we shall use it in the consistency proof for

the numerical method.

2. In (7], the above theorem was only formulated for the special case

P0 = 1. The proof, however, carries over to the general case.

-7-



3. The "rubberlike liquid" constitutive relation has not been entirely

sucessful in comparison with experiments, and several modifications have

been suggested (see e.g. [31). Some of these modified equations have a

similar mathematical structure and are accessible to the same kind of

analysis. In this paper we confine our attention to the rubberlike liquid

as the simplest case.

I

p-8
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3. THE DISCRETE PROBLEM

In this chapter we set up a discretization scheme for (1.1), (1.2) and

prove convergence for small forces f and the initial condition u(x,-0) = x.

The infinite interval, on which (1.1) - (1.3) is posed, is out at a finite

point -T << 0, and the solution on (--,T) is approximated by its initial

T
value. We thus get an approximation u as solution of the following

equation:

T

T 2 -T u t) '
(3.1) Pu 3 T - d 2 T 2

u T( p (x)) (u t))
x x

T Tt u (t) Ux)s) d
f a(t-s) x x )ds 0

-T (u T s)) 2 (u TW)2
x x

for (x,t) e [-1,1] x [-T,0)

(3.2) u T(x,-T) = p(x)

T (u T W))3
(3.3) 3 uT + f a(t-s)ds 2 - ( x))

T 3
t (u(t))T 2

a(t-s)( x 2 - uT(s)) - f(t)(u (t)) = 0
-T (u (s))

x

0 at x =±1, t > -T.

As a next step, this "finite interval problem" will be approximated by a

finite difference procedure. In [5], we studied the boundary problem (3.3),

using an implicit Euler scheme. Convergence uniformly in n was proved,

moreover, it was shown that the discretization preserves the property that,

for appropriate f's, solutions converge to limits exponentially as t

Here, we shall use the same kind of scheme for the full spatio-temporal

4 -9-



problem (3.1) - (3.3). Let us first introduce some notation.

Definition 3.1:

1 n n n n n
Let N e v, h and for n e z let u (u-N uN,...,Nu+i

NN -Ni -''UNu+
e R N ' . Then we define the "spatial" difference quotients

n n

+ n i+1 - ui
i h

n n
uu - ui-~~&- n u - ui-1

i h

n n
U i+l - ui-1

i  2h

and the "temporal" difference quotients

n+l n
+.n u i - ui

U, k

n n-I
n ui - ui

k

i 2k

where k > 0 is given.

We set t = nk, n e Z, t = -T and xi = ih, i = (-N-1)(1)(N+I).n -'U

(3.1) is then discetized as follows (un denotes the approximation to
i

u(xi,t))•

-10-



n t.p6 6 ui - 3n6+A+(-_ - k 2 a(tn+l-t1
A U-r

A- n+l n+

(3.4) • A2( u ) 2 k l. a(t n+ -t •

o'P (xi) 2  .A-Un+l +
A" Uii  -) j,--+

• A r1 Au
-~ " - n+1,2_

(A u) 2  (A un 2
i

for i -N(1)N n ; -m.

We need two initial vectors

u(3.5) u= (x), i (-N-1)(1)(N+I)

-T
In 3.4 we approximated f a(t-s)ds by the discrete sum, although we

could evaluate it exactly. The reason is that this facilitates the stability

analysis of the schem. The sum is given by

-_(t -n+l"t _m )
-M M Kike

(3.6) k I a(t n+ - t) I -A k

1 -e

Let Yl' Yn- denote an approximation to the boundary condition

U T (1), uT(-1). We discretize the boundary problem (3.3) as in [51
X x4.

n+l n . n+1)3y£~ - y -m y,

(3.7) 3 k + k a(tn+ - t 1 )( , ' (L))
j=-('P, (1)2

n+1 (y.n+l) 3
+ n+1____ - n+1)2

+ k I a(tn 1 -tj I ~ yj) f(t )(y£ ) = 0j fm+1 n (y )2 " (tn it

for X- +1, -1, n ) -i.

The corresponding initial conditions are

-11-
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(3 .8) Y l 4 (1) Y-11

Since we want a second order method with respect to k, we approximate the

Neumann conditions by the symmetric difference quotient

(3.9) U n+1 n+l A n+1 n+l
(39 u-N = Y-1  "N Yl

The exterior grid points (-1-h, t n+) and (1+h, t n+) can be eliminated by
n+l n+l

solving (3.9) for UnI and uN+1  and inserting these values into (3.4).

An efficient way to evaluate the last sum in (3.4) (the discrete

approximation to the integral) is as follows. Let

-n (tn+-tj

(3.10) n+l n ) 1gi= Ktk e £tlfj
J=--m+l (A-u .)42

(3.11) -u11 = K tk e t

j=-m+1 i

Then the following recursions hold

n+l n 1tk n -m+l12)= Kk + (e - 1)g0i I g 0
(3.~ -t Kk 91kx

tn+l (- n n t2
(3.13) hni - h i K k e A ui + (e - 1)hgi n hi = 0

and since the n+I-st summand cancels out, (3.4) takes the form

-m

(3.14) P 6 6 un - 3TI S+A+( -  1 -k a(t -t ).i A-uin n+1 n

"- + P' N n+ l
A ++ i --(i) A+ gIn+lA-un+l I*hiA+ ( T -2 _x 2.) - A+( ,,~~~1  U

(x ) (A un ) 1 (A n 2 0

-12-



The boundary problem can be treated in an analogous way. Thus the

computational solution proceeds as follows. At a particular time step, say

n+1 n+ 1 n+1n+1, y is calculated from (3.7) (see [5]). Then ghXi are

calculated from (3.12), (3.13) using the previous values (time step n). By

inserting this into (3.14), a nonlinear (2N+l)-dimensional system of

equations is obtained (after substituting +1+ u-N-1 according to (3.9)).

This nonlinear system is solved by Newton's method, using the values from the

previous time step as a starting point for the iteration. In each iteration

step the Jacobian is tridiagonal and diagonal dominant (the Gauss algotithm

does not require pivoting).

In the remainder of this chapter, we restrict ourselves to the initial

condition P(x) - x. We presented the general problem, however, since we have

also done computations with different initial values. For P(x) - x, u is

odd, and the procedure can be simplified by imposing the Dirichlet condition.

(3.15) u = 0 at x = 0

and by solving in (0,13 x R • This cuts the dimension of the system down

to N+1. We shall give a convergence analysis for this case.

Since we also want to approximate derivatives of u, we work in discrete

Sobolev spaces. We set

(3.16) L = {u - (u 0 ,.,uN+ 1) e R +2 Iu 0

N+11+ 2 )1/2

2 (h IuI) 2

H 2 fu e 2, u2 = lug + 'Au2 + M +A-ul(3.17) Lh 2 2 2 2Hh  L Lh  L
h hi h h

where Au, A +A u are taken componentwise and Au = A+ A-uN+1 0 has been

-13-



set.

We also define for an arbitrary Banach space X:

(3.18) n as (u (uI u e x Eul (k u un 1/2 }
) n 2 (X) n - -

and inductively

(3.19) H (X) - u (u n ) D un e x, u e H (x), u (X)),
kc n=-.. Ick k

lul - Iul + I uI
n n n

H(X) HI(X) H- 1 (X)

0 2
where Hk(X) 0 L (X).

Our analysis will proceed in the following exponentially weighted Sobolev

spaces:

a A nw' -ankun0 2n 1 2 00 2(3.20) X k {u u) .I(e u ) e H k(L h ) H (Rh), u e HhXk ,h h k

suc tat(enk(un  2( 2 1 2
suchthat(e- u )) k Lh ) H (H)}

u -Onkn)O , (e-nkun . (NO a I e n-46 I + I1 2I
Xk,h H k(L 2h k h

+ lul + I(e(nk (un -u ))n I + I(eOnk(u n  u)) I

+II2 n=-o 2 (L2 H~ 1 ( 2
Hh Hk (Lh) k h

a n -ank n 0 ank n.G 2 2
(3.21) Y - (u30 u n) _. I(e u )n,, (e u ) 00 e L kL )k,h - - I

A I ank n. I -ICnk n. 0
|Uy a (e u 2n=-" 2 2 + ne u ,n=-_'1 2 2

Yk,h Lh) ( )

-14-



=* -

0G -Onk n 2 W Unk nl 2(3.22)Zk (f ( f e- f) 8 H k(R)I H e R (e (f )f e Hk(R)

Ifll = Ie-Onkfn)l + I(e (fr - f ))1 + If I
zkH k(R) HKR

These discrete spaces are defined in an analogous way as the spaces used for

the analysis of the continuous problem (7].

We set v =n_ xy n which transforms (3.4) to the equation

F h,k,y(v) = 0, where

^n+1 +, - n 6+ n
(3.23) (a) (Fh,k,y(V)) = p6 v i + px 1  6  y6 - 3,6+A+(- 1

-n+1 n+1 -

n+1 v + y Av + y j

-k a t -t)A( i - 2
n+1 (A-v + yJ )2  (A-vn+l + y +1)2

for i - 1(1)N

n+1 n+1
(b) (F hk (v)) N+1 Fh,k,y(v)N1

n+1
(c) (Fh,k,y(v)) = 0

This formula holds also for n+1 ( -m, where we have y n+ 1, v i+1 -.

A simple but rather lengthy calculation shows that

(3.24) Fh,k,y : Xk,h Yk,h

provided that (y n) e Considerations very similar to those in (51

show that this is the case if f (as of (3.3)) is in YOICR(), 0' < 0 and

_ -15-



IfI is small enough. The boundary conditions at x - 0,1 are already0,1
Y (3)

built into the spaces. The main tool in our convergence proof is Keller's

nonlinear stability-consistency concept.

Consistency follows from a rather lengthy but essential trivial

calculation, which we omit. Let v(xi,t n ) denote u(x i,tn ) - xiux(1,tn),

where u is the solution of (1.1)-(1.3) with s'(x) - x, and let v be the

gridfunction with values v(xi,tn ) in (xi,t n). Then the following estimate

can be obtained.

(3.25) IF (v)I M const. (h + k + o(e
: 32) Ih,k,y 2 ~ 00)ti Yk ,h

provided u - xu (1,t) e X 3(L 2 ) n X, 1 (H4 ). This holds for f e Y 04(R)x

with sufficiently small norm. The constant in (3.25) is independent of h, k,

t-m , 0, and oy e [o0,o 1 ] C (0,a). Independence of n is not assured, since

we do not know anything about the behaviour of the solution as Y) + 0.

in deriving (3.25), the error estimates obtained in [5] for the

approximation (3.7), (3.8) of the boundary condition has been used (the choice

of Sobolev rather than L -based norms does not affect the validity of the

reasoning given there). As far as the local discretization error is

concerned, our scheme is thus second order accurate in space and first order

accurate in time.

In order to investigate stability, we linearize Fh,k,y at v0 = 0

(corresponding to u = x or f - 0 respectively). We set

(3.26) Lh,k,l Fh,k,1 (0)

and investigate the equation

(3.27) 'k, ,g!) e (h' w (w

this yields

-16-



giiP61 - n + +- n n+1e
(3.28) (a) 0 wi  30 A w b w + 3kJ -I a(t n+ 1 - tj)

+.- n+l - i +aw +1

(A A w, A +~h g l

n+1 n+l
(b) w0  - 0, AwN  0

We transform (3.28) to a "parabolic" system of difference equations by

substituting

(3.29) q A Aw, r -,,,, e (t t) " = =P'ti= j=_m,

for £ f 11M

Then (3.28) assumes the form

+ n + - n+ n+ n+M n+l n+1

(3.30) (a) P6 ri  3n1 A ri + 3k I a(tn+1 - j)ql 3 Pli

+ n =++ e- 1 n

(b) 6 P'I, q + k Pti

(C) + q n +A-r n+
1

i i

n+I n+I(d) Ar =0,r =0

The system (3.30) is reduced further by a discrete "separation of variables",

using the Fourier method (see [8]).

We set
N-I

(3.31) n W sin ((2v+1) - x
i V 2 iv=0

n n n n n
and likewise for rJi q., gi' Pi (with obvious notations R etc.). The

I II I II I ' ' " '* I I I I I-I1I-



boundary onditions are automatically satisfied by these expansions.

with

n n n n n -n n~ "'..,n

(3.32) Zv  (RV, QV, R IV, P , Gv (GV, 0, 0,..., 0) ,

the system (3.30) can be rewritten as

n+1 n -n+14 (3.33) A V(h,k) Zn V ZnV + kG~nlV 0(1)(N-1),

where AV is the (M+2)-square matrix

2 n+1I 3"k (h) 3k J_ a(tn+1 3k tj -3k -3k

- kaV(h) 1 0 ... 0

(3.34) A f(hk) 0 -kX 1 e e

0

XM k  0 X Mk
-kK e

Here we have put

2 V+1
2(cos((----)) - 1]

(3.35) a V(h) f 2

n+l

The reader is reminded that I a(tn+ 1 - t ) and hence AV (h,k) does not
i-j

depend on n.

The stability proof relies crucially on the following result.

-18-



Lemma 3.1:

The matrix A hk) has m + 1 eigenvalues A (h,k,v) with positive

real part (with a lower bound for the real part not depending on h, k, or V)

and a simple elgenvalue zero. Moreover, there exists a matrix E (h,k), which
V

together with its inverse is uniformly bounded for h,k e (O,k0), p e (0,P011
A (h,k) - I

V O(i)(N-1), such that Ev(~) E (h,k) has the form

Y 0 ... 0

0

0

where Y is positive with a lower bound uniform in h,k,,p and Vand C is

analytic in all its arguments.

Proof:

The characteristic equation of AV(k) Iis given by

Ak

(3.36) p, (z) a (h k n+1 n+1

e -1_
k z

4+ zk- a (h) + z) 0

We note that a (h) 4 -c for some c > 0, which does not depend on V or

h. For convenience, we assume that A < A < ... < A . obviously

PeV( + = ,p"(' )=~n Therefore, there is at least one
k kc

- 9-



Ai i+1 k

zero of p, n 1) for i = 1(1)(M-1). Moreover,k ' k

pV(0) - 0, and z = 0 is a simple zero. We have thus accounted for M

zeros of p ' and two more are left.

We have

3 M Kie 3
(3.37) p (z) - (b) + C1 (h) + 2

(e - z)2

k

For z e R and z 4 0, we find pV(z) < 0, whence p V has no negative

roots. On the other hand, we find

M Kie 2
(3.38)Im p (z) Im z (a (h) ik + n a (h) + 3 P Re z)

#e -1 z 12
k zi

If Im pV(z) = 0, we therefore have either Im z - 0 or Re z > c > 0. If z

is real and pv(z) = 0, then we know z cannot be negative, and if z is

positive, one easily finds a lower bound for Re z from (3.36). Thus we have

proved the first part of the lemma.

The second part follows from elementary matrix manipulations, which we

don not demonstrate here. One finds that Y a (h) + Y where Y is
P

analytic in k, P and a .a(h)

Lemma 3.2:

Let the nxn-matrix C have only eigenvalues with positive real part.

Then, for each a e L2 , R2), the difference equation

(3.39) 6 y~4) y(t) - y(t-k) = -Cy(t) + a(t)

-20-
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2nhas a unique solution y e L (., )i R ) and the estimate

(3.40) lyl 4 clan
L2 L2

holds with c > 0 independent of k and a.

Proof:

Let y and a be the Fourier transforms of y and a:

M

y(t) -1 f (s)e 2iStds, a(t)=1 f ;(s)e 2wiStds

Equation (3.39) is equivalent to
-2vik
1 -e y(s) = -Cy(s) + a(s)k

or
-2lfilc

y(s) = i + C)- ' a(s)

-2Wik
Since Re(1 - e ) ) 0, the lemma is immediate (use Parseval's equality).

k

As a consequence, we have 16-YE 2 4 onet, Kai L2
LL

An easy corollary is that for a e Y 0'0(n), there is a unique solution

y e Y '0(1n) and an estimate lyl ( clal 0  holds, provided a is

small enough (to see this, substitute y - e y and apply lemma 3.2). If

C = 0 and a e Y 0'0(n), there is a solution y e x0(m n ) and an estimate

0,0 0,0* y' 4 clal holds (recall definition 2.1 for Y ,X'). From thesely ,0 0,0

X Y

results the estimate

(3.41) U(Z )-I 10+2 + 16 +z nn , +2

X C R M) V C " RM+

4 const. IG n -I-.
V yO (e+

)
is immediate. The constant is independent of h, k, V, and P, but may

-21-



depend on i. Wen we rewrite the norms in Xk: h  and Ykah in terms of

Fourier coefficients, we immediately see that the solution of (3.27) satisfies

an estimate

(3.42) w lv , ( const. Igi a
Xkh Yk,h

i.e. we have stability unconditionally with respect to k and h, and the

constant is uniform in h, k, P.

A simple calculation shows that, in a neighbourhood of v = 0, y 1 1, the

. derivative F (v) is uniformly Lipschitz continuous with respect to y
hky

and v, i.e. we have

(3.43) Fh,k,y(v) - Fh,k,y*(v*)l a' a +

k,h k,h

( const. (Iv - v*I - Ny - y* a,)
Xh Zk

If v denotes the solution to the exact problem, and y the solution to

(3.7), (3.8), then Ny - i .. and lv$ ia are small if Nffy1,2 is
Zk Xk,h

small. Therefore all conditions for Keller's [] theory are satisfied, and we

obtain the final result.

Theorem 3.1:

Let a be a positive real number chosen sufficiently small. For any

f e Y 04(R), which has sufficiently small norm in Y 02(R), there is a unique

solution (un )N+1 do ) of (3.4), (3.5), (3.9), and the convergence
ii--N-1 n-

estimate

(3.44) 1((,~ - ,u(xif t)) a

Xk,h

( const. (h2 + k + o(e

-22-



holds as h + 0, k + 0, t + - . The constant is independent of-51

h, k, O' e [ci ,0I] C (0,0). Moreover, (3.4), (3.5), (3.9) can be solved by

the Newton procedure (going from the nth to the (n+l)st time step), which

is quadratically convergent from a sphere of starting values which does not

shrink to a point as h + 0, k + 0, t + -C, t + +00. The convergence is

unconditional in the sense that h, k, tm may approach 0 (or -

respectively) independently.

The main restriction of this theorem is the required smallness of f.

However not more can be expected theoretically since the existence theory only

holds for small f's. In the next chapter we report computation using

arbitrary (actually large) forces f and convergence was realized numerically

for all f's we used.

1-2,

'.

'I

1

-23-
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4. DISCUSSION OF NUMERICAL RESULTS

For the computations we used the same kernel as I.n [5]:

8 -A t
a(t) . Kie i

1=1

with the following constants Ki, Ai .

i Ai (sec
- ) Ki (Nm-2 sec

- 1

1 0- 1 x 10

2 10-2 1.8 x 10- 2

3 10-1 1.89 x 10-1

4 1 9.8 x 103

5 10 2.67 x 105

6 102  5.86 x 106

7 103 9.48 x 107

8 104 1.29 x 109

These numbers were obtained by Laun [2] from an experimental fit for a

polyethylene melt at 1500 C, which he calls "Melt 1".

The parameter n is physically identified as a Newtonian contribution to

the viscosity. Experimental values are not available, and theoretically n

is either a solvent viscosity (for polymer solutions) or it results from

fractions of low molecular weight (for melts). The value of n should be

compared to the viscosity resulting from the memory, which, for constant shear
8

rate, is given by Z KiA 2  50000Nm 2 sec. One would expect n toi=1

influence the solution significantly only if it is at least comparable to this

value. This heuristic argument was confirmed in (5] for the boundary

-24-



equation, and also by our present computations for the spatial problem. The

numbers given in the following are understood to be in the following units:

ni is given in Nm2 sec.

f denotes the force acting on the ends of the filament divided by the

cross-sectional area in the reference state (u - x). It is measured in

-2
Nm 

.

P denotes the density of the filament multiplied by the square of half

the length in the reference state (this latter scaling factor arises from the

normalization of the variable x to the interval C-1,11). P is measured in

-1
kg m

Time is measured in seconds. The mesh size for the following plots was

0.1 for both t and x. For plots 1-13 we chose f = 100000 e- t 2/ 2 5 and

u(x,-0) = x.

The first three plots show u, u and u for p = 1, T = 1. It can
x xx

be seen that u is negligibly small, and u is almost linear in x. That
xx

means the solution is determined by the evolution of the boundary condition,

and inertial forces can be neglected.

This changes, if P is increased. Physically, this means changing the

length of the filament. For realistic values of the density, P = 1 would

correspond to an initial length of a few millimeters, p = 1000 would

correspond to an initial length of about Im.

In plots 4-6, we have p = 1000, n = 1. Three-dimensional plots of u

and u and sections of u at various times are shown. It can be seenxx x

that u has increased by a factor of 1000 compared to the previousxx

plots. Otherwise the qualitative behaviour remains roughly the same.

The next three plots were made for the same P and n = 100000 (for

0 n T ( 10000, the solutions changed very little). In comparison to n = 1,

-25-*



it was found here that the boundary value for u increases more slowly up

to t = -2 and then increases rather suddenly around t - 0. In this region

inertial forces become very important, a fact manifested in the plots by a

rather pronounced spike in uxx

In figure 10 we have P = 1000, n = 1000000. In this case the behaviour

becomes almost Newtonian, and there is hardly any elastic recovery (the

maximal value for u(x=1) is 1.404, the value at t = 60 is still 1.398).

The dependence of u on x is again almost linear.

Several calculations were done for p = 10000. Figures 11-13 show

u, u and u for n = 100000. It can be seen that u becomes rather

large. When one looks carefully at the plots for u, one also finds that a

little "overshoot" occurs in the relaxation: Whereas in the previous plots

u decreased monotonically after reaching the maximal value, this is no longer

true here:

St =6 t=8 t 10 t 12

u(x=-1 ) -83.6 -22.7 -3.8 -4.3

If smaller values of n are chosen, this "overshoot" becomes even more

pronounced. The mesh size becomes very crucial here; if it is chosen too

coarse, then the numerical approximation to ux changes sign in finite

time. This effect could not be reproduced with a finer mesh, although the

values agree very well before one gets near this "critical" point.

For the next three plots we have chosen an "oscillating" force: f = 0

for t < -20 and f = 20000, e-t 2/6 2 5 (1+cosI) for t > -20. The values P =
62

1000, q =100000 were chosen. The solution seems to "follow" the oscillations

with a certain time lag (cf. (5]).

-26-



In plots 17-31 we are concerned with filaments which are not in the

reference state u = x at t = -S, but rather in an already deformed state.

In all cases we have chosen f = 100 000 e-t2/25. In figures 17-19, we have

3
u(x, -C) = x + x , corresponding to a filament which becomes thinner towards

the ends. The parameters P = 1000, n = 1 were chosen. Observe, in

particular, that the recovery of u shows several oscillations here.

The last twelve plots have the same f and
2x

u(x, -) = x - j-, representing a filament that is thinner towards the left.

In figures 20-25, we have P = 1, n = 1, in the second series of figures (26-

31), we have p = 10000, n = 100000. The qualitative behaviour changes

considerably, and, in particular, the effect of inertia is very important.
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